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Magnetic-field-induced periodic deformations in planar nematic layers

D. Krzyżański* and G. Derfel
Institute of Physics, Technical University of Ło´dź, ulica Wólczańska 223, 93-005 Ło´dź, Poland

~Received 1 March 1999; revised manuscript received 16 November 1999!

Periodic deformations of strongly anchored planar nematic layers subjected to magnetic fields were studied
numerically. Two magnetic-field configurations, giving rise to the so-called periodic splay-twist and periodic
twist-splay patterns, were taken into account. The stationary director distribution was calculated for various
values of elastic anisotropy and magnetic-field strength. Some alternative conclusions that shed light on the
properties of the periodic deformations were drawn:~i! the transition from the periodically deformed structure
to the homogeneously deformed one, which occurs in high field, is due to the divergence of the spatial period
of the deformations to infinity;~ii ! the spatial dependence of the angles determining the high-field director
distribution strongly deviates from the theoretically predicted functions of sinusoidal form. The diagrams
showing the ranges of parameters, for which the periodic deformations can realize, were built. The stable
wave-number bands were determined numerically.

PACS number~s!: 61.30.Cz, 61.30.Gd
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I. INTRODUCTION

The career of liquid crystals is due to their permittivity
external fields. Due to the diamagnetic~dielectric! anisotropy
of the liquid crystal, the magnetic~electric! field can influ-
ence the director distributionn(r ) and thus change the opt
cal properties of the layer. The influence of the field has b
known since the early 1930s@1#.

Let us consider the nematic liquid-crystal layer of thic
nessd placed between two plates parallel to the (x,y) plane
in a Cartesian coordinate system. The most elementary
effect occurs in the planar layer in which the initial direct
n0, parallel to thex axis, is subjected to the perpendicul
magnetic fieldHiz. The director distribution is given by th
angleu(z), measured betweenn and the (x,y) plane. The
distortion is dominated by splay. This field effect is call
the Fréedericksz transition. Other simple transition tak
place in the planar layer ifHiy. The director is uniformly
twisted by the anglew(z) between thex axis and the projec-
tion of n on the (x,y) plane. The third elementary deforma
tion with prevailing bend is realized in the homeotropic lay
(n0iz) under the influence of the horizontal magnetic fie
for instance,Hix. In all the mentioned geometries, the tra
sition from the undistorted state~US! to the distorted one
appears if the corresponding threshold field is exceeded.
director distribution along thez axis is identical throughou
the whole area of the layer; thus the term homogeneous
tortion ~HD! is used. The anglesu and w do not depend
either onx or y.

The periodic distortions~PD’s! are another, less commo
type of deformation. They can occur in all three of the g
ometries mentioned above~and in some modifications o
them! if the elastic anisotropy is sufficiently large. They al
possess the threshold character. The deformed director
tribution is much more complicated. Both anglesu andw are
necessary for its description. The most distinguishing fea
is spatial variation of these angles: in addition to their dep
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dence onz, they change periodically along they direction.
The periodicity can be described by the wave vectorqiy or
by the spatial periodl52p/q whereq5uqu. The periodic
changes of director orientation imply the periodic changes
the optical properties of the layer, which are seen in a po
izing microscope as stripes.

The elastic periodic deformations arise in various liqu
crystalline systems. External fields can induce them in c
lesterics@2–4# and in twisted nematics@5,6#. In the electric
field, they are influenced by flexoelectric effects@7–9#. In
addition to the stationary structures, the transient patte
following the applications of external field are observed,
though the final distortion is homogeneous@10–12#.

In this paper, we restrict our attention to the planar ne
atic layers influenced by magnetic fields. Positive diam
netic anisotropy of the liquid crystalDx was assumed. In
such layers, the PD’s can take place in two basic cases~i!
when the field is perpendicular to the plane of the sample
~ii ! when the field is parallel to the sample. In both cases
field is normal to the initial director. The periodic distortion
in these geometries appear to be composed of splay
twist. In case~i!, the splay distortion prevails; thus this kin
of deformation is called periodic splay-twist~PST! deforma-
tion. In the second case, the twist deformation domina
and the term periodic twist-splay~PTS! deformation is used.
The PST deformations were first observed and theoretic
analyzed by Lonberg and Mayer@13#. Later, their observa-
tions were followed by numerous theoretical analyses of P
and PTS deformations@2,8,14–20#.

According to the theoretical findings concerning the p
nar nematic layer, reported in@14–17#, a sufficiently large
elastic anisotropy expressed by suitable values of the r
r 5k22/k11 is necessary for the occurrence of the perio
patterns. In the strongly anchored sample, the PST defor
tion can develop whenr is lower than the limiting valuer c
'0.3. The patterns arise continuously when the free ene
of the undistorted layer in the magnetic field becomes gre
than the free energy of the periodically deformed layer. T
condition determines the threshold strength of the magn
field Hc . It is lower than the threshold for the Fre´edericksz
6663 ©2000 The American Physical Society
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transitions@i.e., lower thanHs5(p/d)Ak11/Dx]. The differ-
enceHS2Hc is proportional to (r c2r )2. The spatial period
of the stripesl increases with the field. Its value at th
threshold is finite and proportional to (r c2r )21/2. It means
thatl tends toward infinity ifr→r c , i.e., the periodic defor-
mation disappears in this limit.

Analogous properties were found for the PTS patter
They can arise ifr .r c851/r c'3.3. The threshold fieldHc8 is
lower than the threshold for homogeneous twist deforma
HT5(p/d)Ak22/Dx and depends onr according to the for-
mula (HT2Hc8)}(r 2r c8)

2. The spatial periodl diverges to
infinity if r decreases tor c8, in agreement with l
}(r 2r c8)

21/2.
The director distribution in the periodically deforme

layer was found for the PST case as a solution of the line
ized torque equations@13,17#. The general form of this solu
tion

ny5g~z!sin~qy!,
~1!

nz5 f ~z!cos~qy!

contains rather complex functionsf (z) andg(z). A simpli-
fied description of director distribution can be given
means of functions

u~y,z!5um cos~pz/d!cos~qy!,
~2!

w~y,z!5wm sin~2pz/d!sin~qy!,

whereum andwm denote the amplitudes of the deformatio
@16,18#. For the PTS case the corresponding formulas re

u~y,z!5um sin~2pz/d!cos~qy!,
~3!

w~y,z!5wm cos~pz/d!sin~qy!.

In the present work, the structure of the stationary P
and PTS periodic deformations was studied by means of
merical simulations. The experimental recognition of the
rector distribution is rather difficult. A theoretical approa
often involves the necessary simplification of assumptio
which may lead to results that are not only quantitatively
also qualitatively incorrect. Therefore computer simulatio
of the nematic layer subjected to the external field seem to
a valuable method, suitable for analysis of the director d
tribution in the layer, especially away from threshold.

Our numerical results, presented in the following, confi
some previous theoretical predictions. Nevertheless, alte
tive conclusions may be drawn from our analysis of the
rector distribution, which shed light on the problem of pe
odic deformations:~i! the PD-HD transition occurring in
high field is due to the divergence of the patterns spa
period to infinity; ~ii ! u(y,z) andw(y,z) dependencies, de
scribing the high-field director distribution, cannot be a
proximated by functions of sinusoidal form.

In Sec. II the parameters of the system under investiga
are specified and the method of the calculations is bri
described. The results are presented in Sec. III. Section I
devoted to a short discussion.
s.
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II. METHOD

The calculations were performed for an infinite layer w
strong planar boundary anchoring. The nematic liquid crys
was confined between two plates parallel to the (x,y) plane
and positioned atz56d/2. The initial directorn0 was ori-
ented along thex axis. The external magnetic field was d
rected either along thez axis ~in the PST case! or along they
axis ~in the PTS case!. The positive diamagnetic anisotrop
Dx was assumed. The elastic properties were charac
ized by constant valuek33/k1151.5 and various ratios
r 5k22/k11. According to the results of experiments me
tioned above, the stripes, which develop in this geome
were directed along thex axis.

A single stripe of widthl was considered during the com
putations. The periodic boundary conditions along they axis
were imposed. The structure of the stripe was found by
merical minimization of the free energy per unit area of t
layer. This quantity was expressed as the energy of the st
counted per unit length along thex axis, divided by the
width l.

The director distribution over the cross section of t
stripe, described by the functionsu(y,z) and w(y,z), was
approximated by discrete anglesu i j and w i j defined in the
sites of theM3N regular lattice. The indicesi 51, . . . ,M
and j 51, . . . ,N determined the position along they and z
axes, respectively. The coordinatesy50 andy5l were de-
termined by i 51 and i 5M11. The sites placed at th
boundary plates atz52d/2 andz5d/2 were labeled byj
51 and j 5N. Even M and oddN were used for conve-
nience, due to the symmetry of the stripe. In most casesM
532 andN533; at high fields, however,M was increased up
to 64. The planes determined byi 5const andj 5const@par-
allel to the (x,y) and (x,z) planes, respectively# have di-
vided the cross section of the stripe intoM3(N21) rectan-
gular cells. The average anglesu andw for each cell, as well
as their spatial derivatives, were expressed by means ou i j
andw i j . These values were used to calculate the elastic
magnetic free energy of the cell counted per unit length
the x direction. A sum of the energies related to all th
M3(N21) cells divided byl was equal to the total free
energy per unit area of the layer.

Initially, the valuesu i j 50 andw i j 5p/2 for all i and j,
and the ratiol/d51 were imposed. To start the deformatio
a small deviation from the initial director position at on
arbitrarily chosen site of the lattice was introduced. The fi
set of theu i j andw i j andl/d variables, which approximated
the real equilibrium director distribution, was calculated
the course of an iteration process. During the computatio
these variables were varied successively by small interv
The angles with indices (i ,1) and (i ,N) could remain un-
changed according to the rigid boundary conditions. The f
energy per unit area of the layer was calculated after e
change. New values of the variables were accepted if t
led to the lower free energy. This procedure was repea
until no further reduction in the total free energy could
achieved. Then the interval was decreased and the pro
repeated. As a result, a state with minimum energy was
tained. The resulting discrete director distributions posses
interesting symmetry properties—the same as the symm
due to the theoretical solution given by Eqs.~2! and ~3!.
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FIG. 1. The director distribution within a single stripe illustrated by means ofu(y/l), w(y/l), u(z/d), andw(z/d) functions plotted for
various magnetic-field ratios as indicated:~a!–~d! PST,r 50.15; ~e!–~h! PTS,r 55.
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Therefore we used this symmetry in order to accelerate
calculations by computing the director distribution only
one-eighth of the stripe cross section, i.e., fori
51, . . . ,M /4 and j 51, . . . ,N/211. The results were suit
ably copied for the rest of the stripe.

The free-energy minimization procedure was perform
for different k22/k11 andH/HS ~or H/HT) ratios. The set of
angles obtained in this way for some set of parameters of
system served as a starting point to computations for o
parameters. This procedure was created in analogy to
method developed earlier in@21#. It was applied to various
e

d

e
er
he

one- and two-dimensional deformations of nematic lay
@21,22#.

III. RESULTS

In the following, the main features of the periodic defo
mations, revealed by the numerical computations, will
described. We present them simultaneously for the PST
PTS cases, in order to show the similarity between these
modes of deformation.

The structure of a single stripe is illustrated by means
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functionsu(y/l), w(y/l), u(z/d), andw(z/d), plotted for
representative cross sections of the layer and for var
magnetic-field strengths. Figures 1~a!–1~d! concern the PST
case and Figs. 1~e!–1~h! exemplify the PTS case. The curve
are sinusoidal only at low fields. Their shapes at high fie
are remarkably different. In particular, they dependencies o
the anglesu in the PST case andw in the PTS case show th
existence of significant regions with almost uniform defo
mation of opposite signs within two halves of the stripes

The periodic features of the director distribution illu
trated by the plots in Figs. 1~a!–1~h! can be summarized a
follows. When we move parallel to they axis, we observe

FIG. 2. The schematic representation of the director field wit
a single stripe:~a! PST,~b! PTS.

FIG. 3. Squares of the amplitudesum and wm plotted as func-
tions of H/HS ~or H/HT) ratios: ~a! PST,r 50.15; ~b! PTS,r 55.
s

s

-

that the director rotates around thex axis and is confined to
the surface of a cone with an oval base. By moving para
to thez axis, similar rotation is observed, but the axis of t
cone deviates from thex direction. The vertex angles of th
cones increase with the field. The base of the cone is redu
to a straight line if the director variation in the midplan
z/d50, or in the planesy/l50, y/l50.25, y/l50.5, and

n

FIG. 4. The dependence of the reversed spatial period on
magnetic-field strength for several values of elastic anisotropy:~a!
PST,~b! PTS; the values ofr are indicated for each curve.

FIG. 5. The ranges of existence of the periodic deformations:~a!
PST,~b! PTS.
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y/l50.75, is considered. Figures 2~a! and 2~b! show the
stripes’ structures schematically by means of cylinders
symbolize the director.

Figures 3~a! and 3~b! illustrate the PD development at low
fields by means of amplitudesum and wm plotted as func-
tions of H/HS ~or H/HT) ratios. The second-order charact
of the HD-PD transition atH5Hc ~or H5Hc8) is revealed.
Both angles are proportional to@(H2Hc)/HS#1/2 in the PST
case and to@(H2Hc8)/HT#1/2 in the PTS case. Dependenc
of this type is well known for the homogeneous deform
tions. From Figs. 1 and 3 it is evident that the roles of
anglesu andw in the PST and PTS modes are interchang
as was noticed in@18# and @20#.

The initial width of the stripl was comparable with the
layer thickness. Its value was proportional to (r c2r )21/2 and
(r 2r c8)

21/2 in the PST and PTS cases, respectively, in agr
ment with the theoretical predictions mentioned earlier.

The dependence of the spatial period on the magne
field strength for several values of elastic anisotropy is ill
trated in Figs. 4~a! and 4~b! by the plots ofd/l versusH/HS
and H/HT , respectively. In general, the period increas
with the field, in agreement with the experimental obser
tions @13#. However, in the PST case, when the elastic
isotropy was particularly high (r 50.05), a slight decrease o
l was observed at low fields. This effect was not found
the PTS case. At some critical fieldHSD (HTD), the periodl
diverges to infinity. With an infinite increase ofl, the single
stripe spreads over the whole layer. This is equivalent to
transition to homogeneous deformation.

The ranges of the field strength, in which the PD c
arise, expressed byHSD2Hc andHTD2Hc8 , depend on the
k22/k11 ratio. They become narrower when thek22/k11 ratio
tends towardr c ~or r c8). The ranges of existence of the pe

FIG. 6. Stability boundaries for the periodic deformations:~a!
PST, r 50.15; ~b! PTS, r 55; RM(Q)—free-energy minimiz-
ing wave numbers; RN(Q)—neutral stability curves;
RE(Q)—Eckhaus-stability boundaries.
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odic deformations in the (r ,H/HS) and (r ,H/HT) planes are
shown in Figs. 5~a! and 5~b!.

IV. DISCUSSION

In this paper, we present the results of the numerical c
culations concerning the stationary director distribution
the periodic distortions induced by a magnetic field in a p
nar nematic layer. The main qualitative properties of o
solutions agree with the experimental data. Neverthe
some different features have been revealed.

It was found that the functions describing the spatial d
pendence of the anglesu and w are sinusoidal only for the
field strengths very close to the corresponding threshold
ues. Therefore the theoretical predictions, based on the
earized torque equations yielding such types ofy depen-
dence, are only valid in rather narrow regions of t
sufficiently low fields. In the high field, the orientation
within prevailing parts of two halves of a stripe become
most independent ofy, i.e., the almost homogeneously d
formed structures arise. They are separated by relatively
walls of strongly deformed material. We have also calcula
the high-field director profiles in the HD structures, a
found that the functionsu(z) in theHiz case andw(z) in the
Hiy case were very close to the corresponding functio
obtained for the homogeneously deformed parts of stripe
the PST and PTS cases, respectively. This comparison
cates the equivalence of the HD structures and the quas
mogeneous regions in the stripes. When the stripes broa
in the increasing field, their homogeneously deformed
gions spread over a large distance across the layer. Whl
is comparable with the size of a finite layer, this process
lead to the transition from PD to HD. The divergence ofl to
infinity resembles the unwinding of the cholesteric helix du
ing the field-induced cholesteric-nematic transition@23#,
when the pitch tends toward infinity with the field approac
ing some critical value. This analogy strongly supports o
results concerning the PD-HD transition.

The periodic deformations described in this paper can
considered as an interesting example of a wide class
pattern-forming phenomena@24#. Nematic liquid-crystal lay-
ers are well-known systems in which pattern formation h
been intensively investigated, mainly by studies of elect
hydrodynamic instabilities~electroconvection! @25# and, to a
lesser extent, by studies of Rayleigh-Be´nard convection@26#
and oscillatory shear instabilities@27#. The PST deforma-
tions may have some influence on the electroconvection@25#.
A smooth transition between electrohydrodynamic instab
ties and PST was predicted@28#.

The PST and PTS deformations reveal many features
ally observed for other pattern-forming systems. Accord
to the classification given in@24#, they belong to the Is type;
i.e., they are periodic in space and stationary in time, wit
continuous band of wave vectorsq. We have determined the
width of the stable wave-number band, which is one of
important problems in the field of pattern formation.

The magnetic field of strengthH applied to the layer plays
the role of the control parameter. The examples of the wa
number bands are presented in Figs. 6~a! and 6~b!, in the
(R,Q) plane, whereR5(H2Hc)/Hc ~in the PST case! or
R5(H2Hc8)/Hc8 ~for the PTS patterns! is the reduced field
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strength andQ5qd is the dimensionless wave number. T
periodic deformations appear if the planar structure beco
unstable against small periodic perturbations. A station
periodic pattern is formed through a continuously arising
stability with finite q. The liquid-crystal layer, deformed b
an external field, forms a gradient system for which the fr
energy density per unit areaF can be treated as the potentia
For a given sample subjected to a given field, this potentia
functional of theu(y,z) andw(y,z) functions, and as a con
sequence it also depends onq. Actually stable periodic state
with the wave numberq0 correspond to the minima of thi
functional. They are represented by the plotsRM(Q), which
are the suitably rescaled inverse functionsd/l5 f (H/HS)
and d/l5 f (H/HT), shown in Figs. 4~a! and 4~b!. In each
case the patterns set in atq5qc correspond to the threshol
field strengthHc ~or Hc8).

There is a continuous band of wave numbers in the vic
ity of q0 for which the free energy of the periodic states
lower than that of the undeformed state. These states
limited by the neutral stability curveRN(Q). The free energy
is zero at this limit. The periodic states above the neu
curve are energetically more favorable than those in the
deformed layer. Below the linear stability curve, a small p
riodic deformation will decay. The amplitude of the period
structure vanishes continuously at the neutral curve. T
property was used to obtain the functionRN(Q). The ampli-
tudesum andwm were calculated as functions ofQ, and the
limiting Q values were determined by extrapolationum→0
and wm→0. The left branch of the neutral curve ends atq
50 and H5HS ~or H5HT), which reflects the fact tha
t.
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above this threshold field the zero-wave-number struct
~i.e., the homogeneously deformed one! becomes energeti
cally more advantageous than the undeformed state~how-
ever, it remains unstable with respect to the periodic de
mations!. The same shape of the stability limit was presen
in @5# for another type of PD found in twisted nematic laye

The periodic pattern whose wave number is too far fro
the minimizing valueq0 becomes unstable with respect
modulations called Eckhaus instability. This perturbati
first occurs as a distortion over arbitrarily long length scal
The Eckhaus-stability criterion for potential systems is giv
by ]2F/]Q2.0 @29#. The curvesRE(Q) in Figs. 6~a! and
6~b! show the limits of the corresponding stability. In ord
to find them, the inflection points of the function
F(Q)uH5const were determined numerically. Above th
RE(Q) curve, the periodic states are resistive to the Eckh
instability. In the vicinity of the critical fieldHc ~or Hc8),
both neutral curveRN(Q) and Eckhaus curveRE(Q) are
nearly parabolic, and the universal ruleRE(Q)53RN(q) is
well obeyed. The left branch of each Eckhaus line a
proaches the minimum-energy curveRM(Q) and joins it at
q50 and H5HSD ~or H5HTD). This corresponds to the
fact that the homogeneously deformed states become s
above this critical field.

It should be noted that the deformations in unrestric
geometry considered here are different from the finite la
case, where the problem of selection of the wave numb
arises@24#. For infinite systems the limits of existence o
periodic solutions are determined by bulk properties. Bou
aries act to reduce the full band allowed by the bulk.
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