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Magnetic-field-induced periodic deformations in planar nematic layers
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Periodic deformations of strongly anchored planar nematic layers subjected to magnetic fields were studied
numerically. Two magnetic-field configurations, giving rise to the so-called periodic splay-twist and periodic
twist-splay patterns, were taken into account. The stationary director distribution was calculated for various
values of elastic anisotropy and magnetic-field strength. Some alternative conclusions that shed light on the
properties of the periodic deformations were draghthe transition from the periodically deformed structure
to the homogeneously deformed one, which occurs in high field, is due to the divergence of the spatial period
of the deformations to infinity(ii) the spatial dependence of the angles determining the high-field director
distribution strongly deviates from the theoretically predicted functions of sinusoidal form. The diagrams
showing the ranges of parameters, for which the periodic deformations can realize, were built. The stable
wave-number bands were determined numerically.

PACS numbeps): 61.30.Cz, 61.30.Gd

[. INTRODUCTION dence onz, they change periodically along thedirection.
The periodicity can be described by the wave vecfpr or

The career of liquid crystals is due to their permittivity to by the spatial perioch=2x/q whereq=|q|. The periodic
external fields. Due to the diamagnefitielectrig anisotropy  changes of director orientation imply the periodic changes of
of the liquid crystal, the magneti@lectrig field can influ-  the optical properties of the layer, which are seen in a polar-
ence the director distribution(r) and thus change the opti- izing microscope as stripes.
cal properties of the layer. The influence of the field has been The elastic periodic deformations arise in various liquid-
known since the early 19304]. crystalline systems. External fields can induce them in cho-

Let us consider the nematic liquid-crystal layer of thick- lesterics[2—4] and in twisted nematickb,6]. In the electric
nessd placed between two plates parallel to they) plane field, they are influenced by flexoelectric effe¢®-9]. In
in a Cartesian coordinate system. The most elementary fieldddition to the stationary structures, the transient patterns
effect occurs in the planar layer in which the initial director following the applications of external field are observed, al-
ng, parallel to thex axis, is subjected to the perpendicular though the final distortion is homogenedu9-12.
magnetic fieldH||z. The director distribution is given by the In this paper, we restrict our attention to the planar nem-
angle 6(z), measured betweem and the &,y) plane. The atic layers influenced by magnetic fields. Positive diamag-
distortion is dominated by splay. This field effect is called netic anisotropy of the liquid crystal y was assumed. In
the Freedericksz transition. Other simple transition takessuch layers, the PD’s can take place in two basic ca$es:
place in the planar layer ifi|ly. The director is uniformly when the field is perpendicular to the plane of the sample and
twisted by the angle>(z) between thes axis and the projec- (i) when the field is parallel to the sample. In both cases the
tion of n on the (,y) plane. The third elementary deforma- field is normal to the initial director. The periodic distortions
tion with prevailing bend is realized in the homeotropic layerin these geometries appear to be composed of splay and
(ngl|2) under the influence of the horizontal magnetic field;twist. In case(i), the splay distortion prevails; thus this kind
for instance H|x. In all the mentioned geometries, the tran- of deformation is called periodic splay-twig?ST) deforma-
sition from the undistorted stat@JS) to the distorted one tion. In the second case, the twist deformation dominates,
appears if the corresponding threshold field is exceeded. Thand the term periodic twist-spla?TS deformation is used.
director distribution along the axis is identical throughout The PST deformations were first observed and theoretically
the whole area of the layer; thus the term homogeneous disnalyzed by Lonberg and Maygt3]. Later, their observa-
tortion (HD) is used. The angleg and ¢ do not depend tions were followed by numerous theoretical analyses of PST
either onx or y. and PTS deformations2,8,14-20Q.

The periodic distortion$PD’s) are another, less common  According to the theoretical findings concerning the pla-
type of deformation. They can occur in all three of the ge-nar nematic layer, reported {i14-17, a sufficiently large
ometries mentioned abov@nd in some modifications of elastic anisotropy expressed by suitable values of the ratio
them if the elastic anisotropy is sufficiently large. They alsor =Kk,/k;; is necessary for the occurrence of the periodic
possess the threshold character. The deformed director dipatterns. In the strongly anchored sample, the PST deforma-
tribution is much more complicated. Both angleand¢ are  tion can develop when is lower than the limiting value,
necessary for its description. The most distinguishing feature=0.3. The patterns arise continuously when the free energy
is spatial variation of these angles: in addition to their depenef the undistorted layer in the magnetic field becomes greater

than the free energy of the periodically deformed layer. This
condition determines the threshold strength of the magnetic
* Author to whom correspondence should be addressed. field H,. It is lower than the threshold for the Te@ericksz
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transitiongi.e., lower tharH ;= (7/d) Vky1/A x]. The differ- Il. METHOD
enceHg—H, is proportional to (,—r)?. The spatial period
of the stripes\ increases with the field. Its value at the

threshold is finite and proportional to {—r) Y2 It means fined bet ; lat el to th |
that\ tends toward infinity iff —r, i.e., the periodic defor- was confined between o plates paraliel 1o ¥lp ane
mation disappears in this limit. and positioned ar=*d/2. The initial directorn, was ori-

Analogous properties were found for the PTS patterns€nted along thex axis. The external magnetic field was di-
They can arise if >r.=1/r ;~3.3. The threshold fieléh is rected either along theaxis (in the PST caseor along they
lower than the threshold for homogeneous twist deformatior@is (in the PTS case The positive diamagnetic anisotropy
Hy= (/d) Vk,/A x and depends on according to the for- .AX was assumed. The elastic properties were cha_racter-
mula (Hy—H.)=(r—r.)2. The spatial period diverges to ized by constant 'valuek33/k11= 1.5 and various ratios
infinity if r decreases tor!, in agreement with\ r_=k22/k11. Accordmg_ to the _results of ex_penments men-
oc(r—r!) 12 tioned _above, the strlpes,_whlch develop in this geometry,

¢ were directed along the axis.
A single stripe of width\ was considered during the com-
utations. The periodic boundary conditions alongytexis

The calculations were performed for an infinite layer with
strong planar boundary anchoring. The nematic liquid crystal

The director distribution in the periodically deformed
layer was found for the PST case as a solution of the linear-

i i i _ b
ized torque equatiorfs.3,17. The general form of this solu were imposed. The structure of the stripe was found by nu-

tion ) ORI .
merical minimization of the free energy per unit area of the
ny=g(2)sin(qy), layer. This quantity was expressed as the energy of the stripe,
(1) counted per unit length along the axis, divided by the
width \.
n,=f(z)cogqy) The director distribution over the cross section of the

stripe, described by the functiory,z) and ¢(y,z), was

contains rather complex functiori§¢z) andg(z). A simpli- approximated by discrete anglés and ;; defined in the

fied description of director distribution can be given by

. sites of theM XN regular lattice. The indices=1, ... M
means of functions andj=1,... N determined the position along tlyeand z
6(y,z)= 6, cod wz/d)cod qy), axes, respectively. The coordinates 0 andy=\ were de-

@) termined byi=1 andi=M+1. The sites placed at the
boundary plates at=—d/2 andz=d/2 were labeled by
o(Y,2)= @y sin(2mz/d)sin(qy), =1 andj=N. Even M and oddN were used for conve-
nience, due to the symmetry of the stripe. In most cades
where 0m and Pm denote the amplitudes of the deformation =32 andN:33’ at h|gh fieldsy howeveM was increased up
[16,18. For the PTS case the corresponding formulas readig 64. The planes determined by const and = const[par-
_ . allel to the ,y) and (x,z) planes, respectivelyhave di-
0(y.2)= 6msin(2mz/d)cosqy), vided the cross section of the stripe itb< (N—1) rectan-
3) gular cells. The average anglésand ¢ for each cell, as well
o(Y,2) = @, cog w2/ d)sin(qy). as their spatial derivatives, were expressed by meart; of
and¢;; . These values were used to calculate the elastic and
In the present work, the structure of the stationary PSTmagnetic free energy of the cell counted per unit length in
and PTS periodic deformations was studied by means of nuhe x direction. A sum of the energies related to all the
merical simulations. The experimental recognition of the di-M X (N—1) cells divided by was equal to the total free
rector distribution is rather difficult. A theoretical approach energy per unit area of the layer.
often involves the necessary simplification of assumptions, Initially, the values#;;=0 and ¢;;==/2 for all i andj,
which may lead to results that are not only quantitatively butand the ratio./d=1 were imposed. To start the deformation,
also qualitatively incorrect. Therefore computer simulationsa small deviation from the initial director position at one
of the nematic layer subjected to the external field seem to barbitrarily chosen site of the lattice was introduced. The final
a valuable method, suitable for analysis of the director disset of the¢;; and¢;; and\/d variables, which approximated
tribution in the layer, especially away from threshold. the real equilibrium director distribution, was calculated in
Our numerical results, presented in the following, confirmthe course of an iteration process. During the computations,
some previous theoretical predictions. Nevertheless, alterndhese variables were varied successively by small intervals.
tive conclusions may be drawn from our analysis of the di-The angles with indicesi(1) and {,N) could remain un-
rector distribution, which shed light on the problem of peri- changed according to the rigid boundary conditions. The free
odic deformations:(i) the PD-HD transition occurring in energy per unit area of the layer was calculated after each
high field is due to the divergence of the patterns spatiathange. New values of the variables were accepted if they
period to infinity; (i) 6(y,z) and ¢(y,z) dependencies, de- led to the lower free energy. This procedure was repeated
scribing the high-field director distribution, cannot be ap-until no further reduction in the total free energy could be
proximated by functions of sinusoidal form. achieved. Then the interval was decreased and the process
In Sec. Il the parameters of the system under investigatiorepeated. As a result, a state with minimum energy was ob-
are specified and the method of the calculations is brieflyained. The resulting discrete director distributions possessed
described. The results are presented in Sec. lll. Section IV igteresting symmetry properties—the same as the symmetry
devoted to a short discussion. due to the theoretical solution given by Ed8) and (3).
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FIG. 1. The director distribution within a single stripe illustrated by mearg&(gf\), ¢(y/\), 6(z/d), ande(z/d) functions plotted for
various magnetic-field ratios as indicatéel—(d) PST,r=0.15;(e)—(h) PTS,r=5.

Therefore we used this symmetry in order to accelerate thene- and two-dimensional deformations of nematic layers
calculations by computing the director distribution only in [21,22.

one-eighth of the stripe cross section, i.e., for

=1,... ,M/4 andj=1,... ,N/2+;. The results were suit- Il RESULTS

ably copied for the rest of the stripe.

The free-energy minimization procedure was performed In the following, the main features of the periodic defor-
for differentk,,/ki; andH/Hg (or H/H7) ratios. The set of mations, revealed by the numerical computations, will be
angles obtained in this way for some set of parameters of thdescribed. We present them simultaneously for the PST and
system served as a starting point to computations for othéPTS cases, in order to show the similarity between these two
parameters. This procedure was created in analogy to thmodes of deformation.
method developed earlier {i21]. It was applied to various The structure of a single stripe is illustrated by means of



6666 D. KRZYZANSKI AND G. DERFEL PRE 61

(a) PST (a)
05/ 000000000000 0COG 0.8
00QQOODYHNDODODDLDOO®OLO
T | 8800005808030 000800 0.6
gBeeosBBEB0C20O080
°0rgBBoo6B808QRBE600B0H0 |H 0.4
Booooe0B8B8866028880 <
08P DORBBHAQRB 0 ©
00OODOOBOOHCDODQROC O 02
-0-5-|oooooooooooooooool
0
by PTS H

051 00 C000000GC000000

OOCLOROVDOORHBRIVDD®

T | o0 8 d0mooDd 8 dom 0.5
COCOEO® § DLOIOES B OV
0 | COCDOm 0 WEWIDMIDEO® O WCDCCD
@O 6 ©ODODEE@D @ OO
DB [ EPPOBVY P HPDD
OO0 HPOOOCBLOO®
-0.5--IOOOOOOOOOOOOOOOOOI

d/

0.25

0 0.25 0.5 Yy 0.75 1

FIG. 2. The schematic representation of the director field within 0.9 1 1.1 1.2 1.3 1.4
a single stripe{a) PST,(b) PTS. H/H:
i FIG. 4. The dependence of the reversed spatial period on the
functions 6(y/\), ¢(y/\), 6(z/d), and ¢(z/d), plotted for magnetic-field strength for several values of elastic anisotry:

representative cross sections of the layer and for variouggt (b) PTS: the values of are indicated for each curve.
magnetic-field strengths. Figuregal-1(d) concern the PST

case and Figs.(&—1(h) exemplify the PTS case. The curves _ . . ,
are sinusoidal only at low fields. Their shapes at high fieladhat the director rotates around thexis and is confined to
are remarkably different. In particular, tyelependencies of € surface of a cone with an oval base. By moving parallel

the anglesd in the PST case and in the PTS case show the to thez axis, similar rotation is observed, but the axis of the
existence of significant regions with almost uniform defor-CON€ deviates from the direction. The vertex angles of the
mation of opposite signs within two halves of the stripes. cones increase with the field. The base of the cone is reduced

The periodic features of the director distribution illus- to a straight line if the director variation in the midplane

trated by the plots in Figs.(4—1(h) can be summarized as z/d=0, or in the planey/A=0, y/x=0.25,y/A=0.5, and
follows. When we move parallel to the axis, we observe
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FIG. 3. Squares of the amplitudé, and ¢,, plotted as func- FIG. 5. The ranges of existence of the periodic deformaticms:
tions of H/Hg (or H/H+) ratios: (a) PST,r=0.15; (b) PTS,r=5. PST,(b) PTS.
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odic deformations in ther(H/Hg) and (,H/H+) planes are

O;wa shown in Figs. &a) and §b).
o
IV. DISCUSSION
0.2 _ _

. In this paper, we present the results of the numerical cal-
culations concerning the stationary director distribution in
the periodic distortions induced by a magnetic field in a pla-

0 nar nematic layer. The main qualitative properties of our

0 3 o 6 9 solutions agree with the experimental data. Nevertheless
some different features have been revealed.

It was found that the functions describing the spatial de-
pendence of the anglgsand ¢ are sinusoidal only for the
field strengths very close to the corresponding threshold val-
ues. Therefore the theoretical predictions, based on the lin-
earized torque equations yielding such typesyoflepen-
dence, are only valid in rather narrow regions of the
sufficiently low fields. In the high field, the orientations
within prevailing parts of two halves of a stripe become al-
most independent of, i.e., the almost homogeneously de-
formed structures arise. They are separated by relatively thin
walls of strongly deformed material. We have also calculated

FIG. 6. Stability boundaries for the periodic deformatiot®:  the high-field director profiles in the HD structures, and
PST, r=0.15; (b) PTS, r=5; Ry(Q)—free-energy minimiz-  found that the functiong(z) in theH| z case ands(z) in the
ing wave numbers; Ry(Q)—neutral stability curves; H|y case were very close to the corresponding functions
Re(Q)—Eckhaus-stability boundaries. obtained for the homogeneously deformed parts of stripes in

the PST and PTS cases, respectively. This comparison indi-
y/N=0.75, is considered. Figurega® and 2b) show the cates the equivalence of the HD structures and the quasiho-
stripes’ structures schematically by means of cylinders thafnogeneous regions in the stripes. When the stripes broaden
symbolize the director. in the increasing field, their homogeneously deformed re-

Figures 3a) and 3b) illustrate the PD development at low 9i0ns spread over a large distance across the layer. When

fields by means of amplitudes,, and ¢, plotted as func- is comparable with the size of a finite layer, this process can
m

tions of H/Hg (or H/H+) ratios. The second-order character !ead to the transition from PD to HD. The divergence.ab

of the HD-PD transition ati=H, (or H=H) is revealed. infinity resembles the unwinding of the cholesteric helix dur-

. N 12 ing the field-induced cholesteric-nematic transitipa3],
Both angles are proportional [¢H—H.)/Hs]™ in the PST when the pitch tends toward infinity with the field approach-

case and tfﬁ(_H_Hé)/HT]m in the PTS case. Dependence jng some critical value. This analogy strongly supports our
of this type is well known for the homogeneous deforma-regyits concerning the PD-HD transition.

tions. From Figs. 1 and 3 it is evident that thg roles of the The periodic deformations described in this paper can be
anglesd ande in the PST and PTS modes are interchangedgonsidered as an interesting example of a wide class of
as was noticed 18] and[20]. . pattern-forming phenomeria4]. Nematic liquid-crystal lay-

The initial width of the striph was comparable with the ers are well-known systems in which pattern formation has
layer thickness. Its value was proportional tg£r) “*?and  peen intensively investigated, mainly by studies of electro-
(r—r¢)~*2inthe PST and PTS cases, respectively, in agreenydrodynamic instabilitiegelectroconvection[25] and, to a
ment with the theoretical predictions mentioned earlier. lesser extent, by studies of RayleighrBed convectior26]

The dependence of the spatial period on the magneticand oscillatory shear instabiliti®7]. The PST deforma-
field strength for several values of elastic anisotropy is illustions may have some influence on the electroconve¢figh
trated in Figs. 4a) and 4b) by the plots ofd/\ versusH/Hg A smooth transition between electrohydrodynamic instabili-
and H/Hy, respectively. In general, the period increasestiies and PST was predict¢as].
with the field, in agreement with the experimental observa- The PST and PTS deformations reveal many features usu-
tions [13]. However, in the PST case, when the elastic anally observed for other pattern-forming systems. According
isotropy was particularly highr&0.05), a slight decrease of to the classification given if24], they belong to thegltype;

A was observed at low fields. This effect was not found ini.e., they are periodic in space and stationary in time, with a
the PTS case. At some critical fiehtisp (H+1p), the period\ continuous band of wave vectogs We have determined the
diverges to infinity. With an infinite increase f the single  width of the stable wave-number band, which is one of the
stripe spreads over the whole layer. This is equivalent to th@mportant problems in the field of pattern formation.
transition to homogeneous deformation. The magnetic field of strengtd applied to the layer plays

The ranges of the field strength, in which the PD canthe role of the control parameter. The examples of the wave-
arise, expressed bysp—H. andHtp—H/, depend on the number bands are presented in Fig&) Gnd &b), in the
k,,/k,, ratio. They become narrower when tkg/k;; ratio  (R,Q) plane, whereR=(H—-H_.)/H. (in the PST caseor
tends toward . (or r;). The ranges of existence of the peri- R=(H—H_)/H_ (for the PTS patternss the reduced field
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strength and)=qd is the dimensionless wave number. The above this threshold field the zero-wave-number structure
periodic deformations appear if the planar structure becomeg.e., the homogeneously deformed priecomes energeti-
unstable against small periodic perturbations. A stationargally more advantageous than the undeformed Stabev-
periodic pattern is formed through a continuously arising in-ever, it remains unstable with respect to the periodic defor-
stability with finite g. The liquid-crystal layer, deformed by mations. The same shape of the stability limit was presented
an external field, forms a gradient system for which the freein [5] for another type of PD found in twisted nematic layers.
energy density per unit aréacan be treated as the potential.  The periodic pattern whose wave number is too far from
For a given sample subjected to a given field, this potential ishe minimizing valueq, becomes unstable with respect to

functional of theé(y,z) and¢(y,z) functions, and as a con-
sequence it also depends @rActually stable periodic states
with the wave numbeq, correspond to the minima of this
functional. They are represented by the plBig(Q), which
are the suitably rescaled inverse functice\=f(H/Hy)
andd/A=f(H/Hy), shown in Figs. 4) and 4b). In each
case the patterns set in @t g, correspond to the threshold
field strengthH (or H/).

modulations called Eckhaus instability. This perturbation
first occurs as a distortion over arbitrarily long length scales.
The Eckhaus-stability criterion for potential systems is given
by #°F/9Q?>0 [29]. The curvesRg(Q) in Figs. §a) and
6(b) show the limits of the corresponding stability. In order
to find them, the inflection points of the functions
F(Q)|n=const Were determined numerically. Above the
Re(Q) curve, the periodic states are resistive to the Eckhaus

There is a continuous band of wave numbers in the vicininstability. In the vicinity of the critical fieldH. (or H(),
ity of qg for which the free energy of the periodic states isboth neutral curveRy(Q) and Eckhaus curv&g(Q) are
lower than that of the undeformed state. These states arearly parabolic, and the universal rdRe(Q)=3Ry(q) is

limited by the neutral stability curvBy(Q). The free energy

well obeyed. The left branch of each Eckhaus line ap-

is zero at this limit. The periodic states above the neutraproaches the minimum-energy curi®y,(Q) and joins it at
curve are energetically more favorable than those in the ung=0 andH=Hgp (or H=Hp). This corresponds to the
deformed layer. Below the linear stability curve, a small pe-fact that the homogeneously deformed states become stable
riodic deformation will decay. The amplitude of the periodic above this critical field.

structure vanishes continuously at the neutral curve. This It should be noted that the deformations in unrestricted

property was used to obtain the functiBy(Q). The ampli-
tudesé,, and ¢, were calculated as functions @, and the
limiting Q values were determined by extrapolatién— 0
and ¢,— 0. The left branch of the neutral curve endsgat
=0 and H=Hg (or H=Hy), which reflects the fact that

geometry considered here are different from the finite layer
case, where the problem of selection of the wave numbers
arises[24]. For infinite systems the limits of existence of
periodic solutions are determined by bulk properties. Bound-
aries act to reduce the full band allowed by the bulk.
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